PRINT ISSN 2285-5718, CD-ROM ISSN 2285-5726, ISSN ONLINE 2286-0126, ISSN-L 2285-5718
 

3D BIOPRINTING OF BLOOD VESSEL MODEL USING COLLAGENHYALURONIC ACID HYDROGEL

Published in AgroLife Scientific Journal, Volume 8, Number 2
Written by Florin IORDACHE, Dorin ALEXANDRU, Aurelia Magdalena PISOSCHI, Aneta POP

3D bioprinting is a technology that supports fabrication of biomimetic tissues with complex architecture. It has application in drug discovery, tissue development, and regenerative medicine. The aim of this study was to create a blood vessel model correlating properties of collagen-hyaluronic acid hydrogel with bioprinter parameters such as speed rate, pressure, number of layers, nozzle diameter, and temperature. The blood vessel model was created using BioCAD software and bioprinted by extrusion technology using collagen-hyaluronic acid hydrogel. We analyzed the water uptake, enzymatic degradation and morphology by scanning electron microscopy and after staining with Hematoxylin and Eosin (H&E) and Trichromic Masson dyes. The results showed that the blood vessel constructs have 2.46 mm (±0.41) mean diameter, 1.4 mm (±0.10) mean thick wall, and 2.8 mm (±0.05) mean height which is appropriate with the model created in the BioCAD software. The optimal parameters for these constructs were: 1.1 bar pressure, 1mm/sec speed rate, 18°C temperature, 0.2 mm nozzle diameter, and 10 numbers of layers. Increasing hydrogel weight by 22% at 2 hours after immersion in PBS suggesting that is hydrophilic. Furthermore, decreasing by up to 47.2% in the presence of collagenase (50 μg/ml) shows that is biodegradable. H&E and Trichromic Masson staining showed that collagen-hyaluronic acid hydrogel organized in a network with pores dimension that could support cells growth and differentiation. In conclusion, our scaffold mimics the blood vessel structure, further experiment will be addressed for study the biocompatibility of these scaffold with mesenchymal stem cells.

[Read full article] [Citation]

The publisher is not responsible for the opinions published in the Volume. They represent the authors’ point of view.

© 2019 AgroLife Scientific Journal. All Rights Reserved. To be cited: AgroLife Scientific Journal.

Powered by INTELIDEV